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Abstract  15 

Many pteropod species in the eastern tropical north Pacific Ocean migrate vertically each day, 16 

transporting organic matter and respiratory carbon below the thermocline. These migrations take 17 

species into cold (15- 10º C) hypoxic water (< 20 µmol O2 kg-1) at depth. We measured the 18 

vertical distribution, oxygen consumption and ammonia excretion for seven species of pteropod, 19 

some of which migrate and some which remain in oxygenated surface waters throughout the day. 20 

Within the upper 200 meters of the water column, changes in water temperature result in a ~60-21 

75% reduction in respiration for most species.  All three species tested under hypoxic conditions 22 

responded to low O2 with an additional ~35-50% reduction in respiratory rate. Combined, low 23 

temperature and hypoxia suppress the metabolic rate of pteropods by ~80-90%. These results 24 

shed light on the ways in which expanding regions of hypoxia and surface ocean warming may 25 

impact pelagic ecology. 26 

27 



Maas et al. 3 
 

Introduction 28 

Regions of low oxygen (O2 < 20 µmol kg-1) account for ~ 7% of the volume of ocean waters 29 

(Paulmier and Ruiz-Pino). Most of this low O2 water is found in mesopelagic features called 30 

oxygen minimum zones (OMZ) that are stable relative to the movements and life cycles of the 31 

planktonic species living there. These regions occur when high productivity in surface waters 32 

promotes an extensive export of fixed carbon to depth, as in the eastern tropical north Pacific 33 

(ETP) and the Gulf of California. Below the photic zone, midwater organisms feeding on 34 

surface-derived material respire the available O2 at a rate faster than it can be replenished by 35 

slow deep ventilation rates (Wyrtki 1962; Fiedler and Talley 2006; Karstensen et al. 2008). 36 

These low O2 waters influence the abundance and vertical distribution of organisms throughout 37 

the water column (Morrison et al. 1999; Wishner et al. 2000; Wishner et al. 2008). 38 

The distribution of animals interacting with OMZs is complex, with high surface 39 

abundance and species-specific patterns of association with low O2 waters (Wishner et al. 2008; 40 

Robinson et al. 2010). Depending upon the energetic demands of the organism and the severity 41 

of the hypoxia, OMZs can support both resident and transient (migratory) life (Seibel 2011). 42 

Species that inhabit regions of hypoxia have highly effective O2 extraction, transport and 43 

delivery systems which allow them to function at very low O2 partial pressures (Sanders and 44 

Childress 1990; Childress and Seibel 1998; Seibel et al. 1999). When O2 concentrations drop 45 

below the level at which these animals can sustain their routine metabolic activity (Pcrit), 46 

metabolism may be suppressed, by curtailing expensive physiological processes, or 47 

supplemented anaerobically (Hand and Hardewig 1996; Hochachka et al. 1996; Guppy and 48 

Withers 1999). Individuals that have surpassed their O2 threshold must retreat to regions with O2 49 

levels above their Pcrit to pay off their oxygen debt and return to routine metabolic rates.  50 

Vertical migrators experience large variations in O2
 concentration and temperature that 51 

influence their metabolism, with consequences for species distribution, biogeochemical cycles 52 

and ecosystem dynamics (Stramma et al. 2010; Seibel 2011).  Above a particular concentration, 53 

the ability of an organism to extract O2 from seawater has evolved to match the lowest O2 partial 54 

pressure encountered in the environment, and the metabolism of midwater animals is generally 55 

independent of O2 (Childress and Seibel 1998).  However, O2 extraction appears to be 56 

constrained below a certain threshold, estimated near 10 µmol kg-1 – a value which is commonly 57 

found in the most extreme OMZs such as in the ETP (Seibel 2011). Often these hypoxic waters 58 
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are associated with deeper, cooler water masses. Colder conditions enhance the ability of 59 

migratory animals to endure hypoxia by reducing the demand for energy. Metabolism generally 60 

decreases by 2-3 fold as a result of a 10°C reduction in temperature for marine ectotherms within 61 

their natural thermal range (Hochachka and Somero 2002).  62 

Diel vertical migratory species inhabit the surface at night and retreat into the upper 63 

oxycline and the OMZ during the daytime, putatively for niche partitioning, metabolic 64 

advantage, or predator avoidance (Hays 2003; Fernández-Álamo and Färber-Lorda 2006; 65 

Antezana 2009). Consuming fixed carbon at night, migrators transport organic matter below the 66 

thermocline where it is excreted as respiratory carbon (CO2) and waste products (NH3, fecal 67 

matter, DOC).  This process contributes to the biological pump of carbon and nitrogen from 68 

surface waters to depth (Longhurst and Harrison 1989; Dam et al. 1995; Hays et al. 1997; 69 

Steinberg et al. 2000; Honjo et al. 2008; Robinson et al. 2010).  Calculations based on these 70 

processes have been used to model the carbon flux to the deep sea. However, there are currently 71 

large imbalances in these dark ocean carbon budgets (Burd et al. 2010). Unaccounted for 72 

variation in species composition and changes in metabolic rate due to hypoxia may contribute to 73 

the uncertainty in these estimates of biogeochemical cycling (Buesseler et al. 2007; Seibel 2011). 74 

In order to accurately calculate export production, remineralization rates and carbon cycling, we 75 

must understand how the metabolic rate and depth distribution of migrators is impacted by the 76 

environmental conditions of the OMZ.  77 

The importance of having good estimates of these cycles is made more pressing by the 78 

fact that human activities are altering temperatures and O2 levels in the open ocean, and these 79 

physical changes interact synergistically on organisms and ecosystems (Rosa and Seibel 2008; 80 

Pörtner 2010; Seibel 2011; Vaquer-Sunyer and Duarte 2011). The warming of surface waters 81 

leads to a decrease in O2 solubility so that as mixing occurs, less O2 is carried to depth. Warming 82 

also increases stratification, which generally prevents mixing. Together, higher temperatures and 83 

a stable mixed layer produce conditions favorable for phytoplankton blooms, resulting in greater 84 

export of carbon out of surface waters (Sarmiento et al. 1998; Bopp et al. 2005; Behrenfeld et al. 85 

2006). Decreases in O2 exchange and increases in surface export contribute to the current 86 

theorized worldwide expansion of OMZs, with unknown implications for marine biota and 87 

biogeochemical cycles (Oschlies et al. 2008; Stramma et al. 2008; Stramma et al. 2010). 88 

Together hypoxia and rising temperatures could substantially alter the population distribution, 89 
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abundance and community structure of plankton throughout OMZ regions. It has been 90 

hypothesized that changes in species dynamics in response to anthropogenic forcing factors 91 

could also have a strong feedback on climate, reducing carbon sequestration in the ocean depths 92 

(Buesseler et al. 2007).   93 

In order to understand how climate change will affect the ecology of diel vertical 94 

migrating zooplankton, we must first quantify the physiological tolerance of particular taxa to the 95 

environmental factors that they are exposed to in their environment. Here, we document the 96 

vertical distribution and abundance of pteropod species in the Eastern Tropical North Pacific and 97 

measured their O2 consumption and NH3 excretion rates under conditions that mimic their day- 98 

and nighttime habitats. Our results contribute to the understanding of marine zooplankton 99 

response to expanding OMZs. Thecosomatous pteropods are, in theory, unlikely inhabitants of 100 

OMZs; their aragonitic shells are believed to be vulnerable to dissolution in low pH, high CO2 101 

environments, such as the OMZ. However, it has been shown that some species migrate daily 102 

into the OMZ and that the metabolic rates of these species are not influenced by short term 103 

exposure to carbon dioxide (Maas et al. 2012). This study seeks to establish whether the presence 104 

of pteropods within the OMZ, despite high levels of carbon dioxide, may be facilitated by the 105 

effect of temperature and low oxygen on their physiology.  106 

 107 

Methods  108 

Pteropod distributions were sampled during the day and night during October - November 2007 109 

and December 2008 - January 2009 at the Tehuantepec Bowl (11o N 98oW) and the Costa Rica 110 

Dome (9o N 90o W) using a vertically stratified MOCNESS (Wiebe et al. 1985) as part of the 111 

ETP Project (PI: K. Daly). This system was equipped with a Seabird SBE43 electronic sensor for 112 

O2, as well as sensors for temperature, depth, salinity, and % light transmission.  Samples for the 113 

pteropod study were collected from 0-400 meters using 153-µm mesh nets in sampling intervals 114 

which varied from 10 meters to 150 meters thick in order to capture fine scale detail at 115 

ecologically important transitions (Table 1). At sea, the contents of the nets were split using a 116 

flat-bottomed Motoda splitter, then half of the sample was preserved in 4% sodium borate-117 

buffered formalin and sea water. In the lab these samples were poured through a 64-µm mesh 118 

sieve and washed into a Pyrex dish for sorting. Pteropods were sorted, identified and enumerated 119 

using a dissecting microscope.  Population densities (individuals m-3) were calculated for each 120 
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depth interval, taking into account net volume filtered and split size. Using this information, the 121 

mean weighted depth was calculated using the equation of Perry et al. (1993) as mean weighted 122 

depth =  123 

Ʃ( xi
 x zi)/ Ʃ(xi) 124 

where xi = # individuals m-3 and zi = mid-depth of the net. 125 

Using the PRIMER 6 Statistical Package  (PRIMER-E, Luton UK) we created a principal 126 

component analysis of the environmental data using the mean temperature, O2, salinity and 127 

percent light transmission values from the depth range of each net. Depth categories (0-50, 50-128 

100, 100-350, 350-400) were assigned to each sample to allow comparisons across years despite 129 

variations in net deployment (Table 1). These values were chosen to match general hydrographic 130 

features, specifically temperature and oxygen gradients, and to provide consistency with other 131 

analyses (Wishner et al. 2008; Wishner et al. in prep). O2 concentration data was unavailable 132 

from the MOCNESS sensor in these tows for the top 40 meters at CRD in 2007; these data were 133 

estimated using values collected by CTD casts made at the same station and year (processed by 134 

Dr. C. Flagg, Stony Brook University). Before analysis, the hydrographic data were log-135 

transformed to achieve multivariate normality (Clarke and Gorley 2006). The principal 136 

component analysis of environmental data was paired with a resemblance matrix based on a 137 

Bray-Curtis similarity measure of pteropod presence/absence from 0-400 meters. Using the 138 

BEST BIOENV statistical analysis (Clarke 1993), we calculated which hydrographic features 139 

best predicted the distributional patterns of thecosome pteropods during the day and night.  140 

 For physiological studies, thecosomatous pteropods were collected from the Gulf of 141 

California (27o N 112o W) in June 2007 and from the Tehuantepec Bowl (11o N 98oW) and the 142 

Costa Rica Dome (9o N 90o W) during the ETP project (Fig. 1). Seven pteropod species were 143 

studied: Hyalocylis striata, Creseis virgula, Clio pyramidata, Cavolinia uncinata, Cavolinia 144 

inflexa, Cavolinia longirostris and Diacria quadridentata. These animals were collected with  145 

either a 61 cm-diameter 335 µm-mesh bongo net trawl, a 10 m2 Tucker trawl with a thermally 146 

protected cod end (Childress et al. 1978) or using SCUBA (Haddock and Heine 2005). CTD 147 

casts of the water column were made just before or after collection periods to allow for 148 

comparisons with hydrography. 149 

 Post-capture, organisms were kept at either 10° or 20°C in 0.2 micron-filtered water for 150 

at least eight hours in densities < 10 individuals L-1 to allow for gut clearance and temperature 151 
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acclimation.  Individuals were then transferred into 0.2 micron-filtered seawater in 10 mL glass 152 

syringe respiration chambers that were placed in temperature-controlled waterbaths. The 153 

experimental water was treated with 25mg L-1 each of Streptomycin and Ampicillin to minimize 154 

microbial respiration and remain methodologically consistent with previous studies (Childress 155 

1971; Seibel et al. 1997; Rosa and Seibel 2010; Maas et al. 2011).   156 

 Respiration experiments investigating the effects of temperature ranged in duration from 157 

6-18 hours to provide time for a measureable change in oxygen saturation. This variation was a 158 

function of the differences in size and metabolic rate of individuals of various species. These 159 

experiments were used to compare the oxygen consumption rates (R) of individuals over what 160 

was thought to be the temperatures of their daytime and nighttime habitats (T = 11 to 20°C 161 

respectively) using a temperature coefficient (Q10), where  162 

Q10 = (R2/R1)[(T2−T1)/10]
 163 

 Low oxygen experiments, run on three species for which sufficient numbers were 164 

collected (H. striata, C. virgula and C. longirostris), differed from temperature experiments in 165 

that they all were conducted at 11°C in water that had been bubbled with either ambient air 166 

(~21% O2; 285 µmol kg-1) or a certified gas mixture of 1% O2, which achieved a mean initial O2 167 

concentration of 31.5 ± 8.0 µmol kg-1.  The duration of these experiments was shorter (2-7 hours) 168 

to prevent complete oxygen depletion of the chambers and the subsequent death of the study 169 

organisms. 170 

At the conclusion of all experiments, water samples were tested for O2 concentration 171 

using a Clarke-type microcathode O2 (#1302) and meter (#782) in a water-jacketed injection port 172 

(#MC100, Strathkelvin Instruments, North Lanarkshire, United Kingdom) as described in Marsh 173 

and Manahan (1999). Water from the experimental chambers of hypoxic treatments was tested 174 

for NH3 using the indophenol blue colorimetric assay (Ivancic and Degobbis 1984).  The O2 175 

consumption and NH3 excretion ratio was compared to assess the type of catabolic substrate 176 

using the estimated ratios for zooplankton metabolism of Mayzaud and Conover (1988). All 177 

specimens were weighed using a ship-board balance system (Childress and Mickel 1980), and 178 

frozen in liquid nitrogen for later examination. Using a Pinnacle Series Analytical Balance 179 

(Denver Instruments), we reweighed a subset of these animals upon return to the laboratory to 180 

verify the accuracy of the field weights (scale = ±0.001 g). The mass-specific metabolic rate (Y) 181 
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of each species of pteropod was calculated, relating to the wet mass of the organism (M) 182 

according to the power regression of 183 

Y = aMb 184 

where a is a normalization constant and b is the scaling coefficient. We used species-specific 185 

scaling curves to normalize metabolic rates to a common body mass of 10 mg (a) for all species. 186 

T-tests were run using the STATISTICA software package (StatSoft) and were reported as 187 

significant if p < 0.05. 188 

 189 

 Results 190 

The OMZ was shown to be part of the natural habitat for a number of thecosome species in the 191 

ETP (Fig 2). Of the six species found in MOCNESS nets during our expeditions, H. striata, C. 192 

pyramidata, C. longirostris and C. virgula showed a vertical distribution that included portions 193 

of the OMZ. Diacria quadridentata and C. inflexa were never found in low O2 waters. Cavolinia 194 

uncinata was the only pteropod not present in MOCNESS samples; it was collected infrequently 195 

by SCUBA during both day and night dives between 0-30 m suggesting that it was never present 196 

in OMZ waters.   197 

The hydrography of the CRD and the TB was consistently different between years. The 198 

thermocline was ~20 meters during both the daytime and nighttime of 2007 at both stations. In 199 

2008 CRD had a thermocline consistently near ~20 meters, whereas TB had a deeper mixed 200 

layer of ~30 meters during the day tow and ~50 meters during the night tow (Fig. 1).  This 201 

difference in the breadth of the mixed layer between day and night at TB during 2008 was likely 202 

due to an internal wave or variation in the precise position of the tows. The TB station had 203 

slightly higher temperatures in the mixed layer, of 27.8 ºC on average, whereas CRD surface 204 

temperatures averaged 25.5 ºC. Below the mixed layer, temperature dropped precipitously over a 205 

depth range of ~300 m to ~10o C and O2 concentration dropped from greater than 200 μmol kg-1 206 

to as low as 1 μmol kg-1 at both stations during both seasons. There was a much sharper oxycline 207 

at TB, which led to a vertically broader OMZ. The upper oxycline region of CRD had a more 208 

gradual drop to pronounced hypoxia, although eventually O2 levels dropped to less than 2 μmol 209 

kg-1 by 200-250 m compared to ~60 m at TB (Fig. 1). Individual net data and depth 210 

classifications are included in supplementary table 1. 211 
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The day and night water column abundances (# m-2 from 0-1000 m) at each station were 212 

rarely the same, indicating that populations were patchy (Table 2). Although many populations 213 

were found occasionally below the thermocline, such as C. pyramidata, C. longirostris and C. 214 

virgula, the mean weighted depth for each of these species was in the mixed layer. Only H. 215 

striata demonstrated a clear, consistent and significant difference in the day and night 216 

distribution as calculated by mean weighted depth during both years and at both stations (paired 217 

t3 = -8.06, p = 0.004). Statistical analysis using the BEST BIOENV analysis suggested that O2 218 

was the best predictor of pteropod presence/absence during both the day and the night, although 219 

the correlations were not strong, likely due to the patchiness of the distribution (Day R=0.406, 220 

Night R=0.118). Net abundance data is available in supplementary table 2. 221 

Metabolic rates for thecosomatous pteropods ranged from 2.01-12.3 O2 g-1 h-1 at 20º C. 222 

These values are similar to those reported for other pteropods at similar temperatures (Gilmer 223 

1974; Seibel et al. 2007).  Previous work in the ETP and Gulf of California has established that 224 

there is no significant effect of location or capture type on pteropod metabolic rate (Maas et al. 225 

2012). After scaling to a common body mass, the metabolic rates of all pteropod species ranged 226 

from an average scaled rate of 2.1 - 9.6 µmol of O2 g-1 h-1 at 20º C and 1.2 - 3.6 µmol of O2 g-1 h-227 
1 at 11º C (Table 3; Fig. 3). These scaled values were used to calculate the response of 228 

metabolism to changes in temperature.  Temperature coefficients for most species fell within the 229 

normal range for marine ectotherms (Q10 = 2-3), indicating a 2-3-fold reduction in metabolism 230 

with a 10º C reduction in temperature (Table 3; Fig. 4). Cavolinia uncinata showed no statistical 231 

difference in O2 consumption between 11º and 20º C. 232 

The three species of pteropods tested for response to low O2, H. striata, C. longirostris 233 

and C.virgula, responded to hypoxia (~30 µmol O2 kg-1) with a decrease in O2 consumption 234 

(Table 4, Fig. 5). This reduction in metabolic rate ranged between ~35-50% from normoxic rates 235 

at 11º C. Ammonia excretion was not influenced by hypoxia in any species. Changing O2 236 

consumption rates and stable NH3 excretion resulted in a significant change in O:N ratio for H. 237 

striata and C. virgula. Generally there was a shift to a lower O:N ratio at colder temperatures 238 

indicating that a greater proportion of catabolism was fueled by protein at 11º C. 239 

 240 

Discussion 241 
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Pteropods, like most animals, respond to decreasing temperatures with a marked reduction in 242 

metabolic rate. This is not unusual for marine ectotherms, whose temperature coefficients (Q10) 243 

frequently fall between 2-3 (Smith and Teal 1973; Hochachka and Somero 2002; Seibel and 244 

Drazen 2007). The number of individuals captured in good condition and usable for respiration 245 

experiments varied among species. Post-capture, some species were more sensitive to captivity, 246 

causing them to die during experiments. As a result, there are significantly smaller datasets for C. 247 

uncinata, D. quadridentata, C. pyramidata and C. inflexa. This variability in sample size impacts 248 

the statistical power of analyses, preventing us from making any conclusions about the effect of 249 

temperature on C. pyramidata and possibly contributing to the unusual Q10 of C. uncinata. 250 

However, our results show that the Q10 of most pteropod species fell between 1.9 and 3.9 251 

suggesting that they would use between ~55-75% less O2 at depth, solely due to lower 252 

temperature.  This response has been described in a number of animals which migrate into 253 

hypoxia and has been hypothesized to facilitate tolerance of severely O2 depleted waters (Quetin 254 

and Childress 1976; Svetlichny et al. 2000; Rosa and Seibel 2010). Our values, which were only 255 

calculated using two temperatures, were intended to describe the response of these species at the 256 

ecologically relevant temperatures of their day and night habitat depth and we urge caution when 257 

using them to predict species specific metabolic rates at a third temperature.  258 

 The scaling coefficients describing the relationship between metabolism and body 259 

mass are remarkably negative (-0.56 < b <  -1.38). Mass-specific O2 consumption rates tend to 260 

scale with a factor near -0.25.  In the open ocean, scaling coefficients are often much shallower 261 

(more positive) (Glazier 2005; Seibel 2007). Within pteropods, Clione spp. and Limacina spp. 262 

have been documented with scaling curves near quarter power (Seibel et al. 2007; Maas et al. 263 

2011). Our extremely negative scaling coefficients may be a result of the small range in animal 264 

sizes captured in this study.  Typically, a size range of at least two orders of magnitude is 265 

required for accurate measurement of scaling effects.  266 

Species that are found below the oxycline experience periods of very low O2 (~5-25 μmol 267 

kg-1) on a daily basis. Since aerobic respiration yields the greatest energy for metabolism, strong 268 

selection exists to enhance mechanisms for oxygen extraction in species living in OMZs 269 

(Childress and Seibel 1998).  In regions where O2 saturation is below a threshold level, 270 

organisms must either respond with a reduced metabolic rate, switch to less energetically 271 

efficient anaerobic respiration, or a combination of the two (Seibel 2011). Our study indicates 272 
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that for H. striata, C. longirostris and C. virgula there is a ~30-50% reduction in O2 consumption 273 

rate during exposure to low O2 environments. With such substantial changes in metabolism it is 274 

likely that pteropods require time in well oxygenated water to feed, grow, and reproduce. 275 

Anaerobic responses were untested in this study, which prevents us from making any 276 

conclusions about overall metabolic depression. However, the severity of the hypoxia in the 277 

OMZ of the ETP, the less energy efficient nature of glycolysis and the decrease in pteropod O2 278 

consumption rate between normoxia (~285 μmol O2) and hypoxia (~34 μmol O2) at 11ºC 279 

suggests that suppression of total metabolism (aerobic and anaerobic pathways) is a likely tactic 280 

for pteropod survival in hypoxia in this region. Studies on other vertical migrators in the ETP 281 

such as the jumbo squid (Dosidicus gigas), and krill (Euphausia eximia), show that these species 282 

are unable to meet their metabolic needs with anaerobic metabolism alone and have to rely on 283 

metabolic suppression under hypoxic conditions (Rosa and Seibel 2010; Seibel 2011).  284 

Metabolic suppression is typically achieved by changes in membrane permeability which  285 

reduce ion pumping,  by reductions in locomotion, and by shutting down expensive cellular 286 

processes such as ion-motive ATPases and protein synthesis (Hochachka et al. 1996; Boutilier 287 

2001). This down regulation allows the animal to survive anaerobic periods, but generally 288 

precludes active growth and feeding.  Although the ammonia excretion of pteropods exposed to 289 

hypoxia was not significantly affected, the ratio between O2 consumed and NH3 excreted was 290 

significantly reduced in both H. striata and C. virgula suggesting that protein was supporting a 291 

greater portion of metabolism. A similar reduction in C. longirostris O:N ratio was observed, 292 

although the effect was not significant (p = 0.06), which may be due to small sample size and a 293 

large variability in the NH3 excretion of this species. Very little research has assessed the impact 294 

of hypoxia on protein metabolism in invertebrates (Fraser and Rogers 2007); however, results 295 

from studies of fish indicate that amino acid catabolism may be upregulated during hypoxia to 296 

maintain homeostasis (Gracey et al. 2001). The reduction of O2 consumption by pteropods 297 

exposed in the laboratory to O2 concentrations mimicking the OMZ reveals that migratory 298 

pteropod species are unable to meet their metabolic needs at O2 concentrations < 30 μmol kg-1 299 

without a suppression of metabolism. The specific pathways activated by hypoxia exposure in 300 

pteropods bear further investigation, particularly since one of the biochemical generalities of 301 

metabolic depression in response to hypoxia is a reduction in pH (Guppy and Withers 1999). In 302 

OMZs hypoxia and low pH occur in synchrony and may interact on the physiology of 303 
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mesopelagic species. This study reveals that metabolic suppression does appear to be an 304 

important survival tactic for pteropods living under conditions of severe hypoxia, and previous 305 

work indicates that the metabolism of migratory pteropods in this region is not impacted by a 306 

reduction in environmental pH (Maas et al. 2012). Further research investigating whether the co-307 

occurrence of low O2 and pH was facilitative or non-additive to metabolic suppression is 308 

warranted. The amount of suppression is likely dependent on physiological adaptation to 309 

hypoxia, the temperature at which they experience low O2 and the energetic demand of the 310 

animal. Our results show that species specific differences in metabolic rate, size, and distribution 311 

result in different reactions to changes in temperature and hypoxia within the thecosome 312 

pteropod group.  313 

Hyalocylis striata was the species most closely associated with hypoxic waters. 314 

Compared to the other species investigated, H. striata has the third lowest scaled metabolic rate 315 

(6.8 ± 2.3 µmol of O2 g-1 h-1). This low metabolic rate may be indicative of a less active lifestyle.  316 

This species has a relatively thin shell whose weight is reduced by the loss of the juvenile shell 317 

(protoconch). During SCUBA expeditions from 0-30 m, we observed these animals generally 318 

hovering neutrally buoyant in the water, although they responded to stimuli with a quick burst of 319 

escape swimming (personal observation).  Low energetic requirements, in conjunction with 320 

metabolic suppression in response to hypoxia (~33%), allow this species to inhabit OMZs. 321 

However, their residence there is contingent on their capacity to return to regions of high O2 as 322 

indicated by their distribution and their metabolic rate under oxygenated cold conditions.   323 

Creseis virgula was the smallest of the pteropods studied here and it has the lowest scaled 324 

metabolic rate (4.9 ± 1.6 µmol of O2 g-1 h-1). Of all the species, C. virgula was most affected by 325 

temperature, responding to 11º C with an almost four-fold reduction in O2 consumption. This 326 

large response to temperature can have an important influence on this species, which has the 327 

broadest consistent vertical distribution, although there may be ontogenetic differences in their 328 

distribution (personal observation). These animals have been found from 0-400 meters during 329 

both the day and night, living in waters where O2 has dropped as low as ~1 µmol kg-1. Our 330 

respiration experiments were run only on larger, adult animals, whereas the MOCNESS 331 

distribution included many size classes. This bears further investigation, as it has been shown 332 

that the energetic requirements of different life stages differ, as do the responses to 333 

environmental stressors, such as hypoxia, resulting in differences in vertical distribution for 334 
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different developmental stages within a species (Wishner et al. 2000). Beyond the effects of 335 

scaling, which predisposes smaller animals to a greater O2 demand g-1, certain life stages are 336 

engaged in highly energetic processes such as reproduction which may impact their O2 needs. 337 

Our study shows that the distribution of C. virgula is not constrained by OMZ water down to ~10 338 

µmol O2 kg-1. This species is capable of metabolic suppression of ~33% under conditions of low 339 

O2 and is very responsive to changes in water temperature, which gives it the greatest overall 340 

change in metabolic rate at cold hypoxic conditions (~86%). However, C. virgula may be 341 

vulnerable to surface water warming due to their high temperature-sensitivity. 342 

 Cavolinia longirostris is found in the mixed layer during the day and night although it is 343 

also sometimes found at depth (~0-150 m at night and at 250-300 m during the day). This species 344 

has one of the highest metabolic rates of the species examined in this study and the second 345 

lowest Q10. This species was found in patches both at the surface and depth at all times of day. 346 

Although less responsive to low temperatures, this species is the most affected by hypoxia; when 347 

exposed to low O2 waters their metabolism was suppressed by 49% which caused their overall 348 

metabolic suppression to fall into a similar range (81%) as H. striata and C. virgula despite their 349 

smaller response to temperature change. 350 

Diacria quadridentata and C. inflexa were the only species in this study not found in net 351 

tows below the mixed layer. Cavolinia uncinata was never found in MOCNESS samples, 352 

possibly due to lower abundances. They were collected on SCUBA dives during the day and 353 

night at the Costa Rica Dome, suggesting that they live only in the mixed layer. Both C. uncinata 354 

and C. inflexa have elaborate wing flaps trailing from their body which they hold fully extended 355 

while hovering in the water column, either for buoyancy or prey capture (Gilmer and Harbison 356 

1986). These structures cause them to be much more delicate than other thecosomes and 357 

inadvertent handling or capture damage may explain the greater variation in O2 consumption of 358 

these species.  359 

As epipelagic species, D. quadridentata, C. uncinata and C. inflexa experience more 360 

moderate changes in temperature and likely never inhabit hypoxic water. Diacria quadridentata 361 

and C. inflexa were some of the more sensitive pteropods to changes in temperature with a Q10 of 362 

2.6 and 2.7 respectively. Cavolinia uncinata was the largest of the pteropods collected in the 363 

ETP, weighing 4 to 6 times more than all other species and was the only organism which was not 364 

significantly affected by temperature. All other species responded to cold temperatures with a 365 
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decrease in metabolic rate, whereas there was a slight increase in the average metabolic rate of C. 366 

uncinata at 11 °C. This Q10 should be treated with caution since the standard deviation in the 367 

20°C treatment, possibly a product of capture stress to these very delicate organisms, and a low 368 

sample size resulted in a non-significant difference between thermal treatments.  Another 369 

possible explanation  may be that C. uncinata, despite being found exclusively above the 370 

thermocline, is close to its upper thermal limit when exposed to 20 °C or is below its thermal 371 

limit at 11 °C. Although increases in metabolic rate with increasing temperature are the norm 372 

within an animal’s natural thermal conditions, above or below their thermal limit the effect of 373 

temperature on metabolic demand is unpredictable as cellular thermal stress or metabolic shut-374 

down occur (Pörtner and Farrell 2008). In such circumstances a Q10 below 1 could indicate 375 

thermal stress (Hochachka and Somero 2002). 376 

The pteropods examined in this study have differences in distribution, metabolic rate, and 377 

physiological response to temperature and hypoxia. As anthropogenic change causes expansion 378 

of OMZs and surface warming, there will be disproportionate effects on various species. Clio 379 

pyramidata, C. inflexa and C. uncinata were never caught in the Tehuantepec Bowl, a site where 380 

hypoxic conditions occur shallowest and most severely (Fig. 1). If hypoxic waters expand to 381 

match the severity of the OMZ at the Tehuantepec Bowl, these species may face physiological 382 

stress from hypoxic waters directly below the thermocline.  383 

Species that are found in the OMZ, such as H. striata, C. longirostris and C. virgula, are 384 

living below their Pcrit, as evidenced by their metabolic suppression under low oxygen studies. 385 

Already inhabiting waters with O2 concentrations between 1-20 µmol kg-1, which penetrate 386 

almost to the thermocline in some regions, it is unlikely that expanding hypoxia will impact these 387 

species. However, migrators are also found in the epipelagic zone, where they must retreat to 388 

recover from metabolic suppression. The warming of surface waters may impose an energetic 389 

stress on species that are particularly sensitive to temperature, such as C. virgula, by increasing 390 

their metabolic demand. This hypothesis may be corroborated by the smaller vertical range of C. 391 

virgula at the Tehuantepec Bowl where surface waters are warmer and hypoxia at depth is more 392 

severe. Other species, less metabolically responsive to warming, like C. longirostris, may be 393 

unaffected. 394 

The temperature effect on diel vertical migrators, such as that documented in this study, 395 

has already been incorporated into analyses of carbon flux (Burd et al. 2010). However, the 396 
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reduction in O2 consumption rate under hypoxic conditions has not been accounted for. The 397 

substantial difference in production of respiratory carbon which occurs under hypoxic conditions 398 

(~35-50%) could be a significant factor impacting calculations of DIC movement below the 399 

mixed layer. The impact on biogeochemical cycling is potentially non-trivial and warrants 400 

further investigation.   401 
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Fig. Legends: 583 

 584 
Fig. 1: A typical temperature (ºC, black) and O2 (µmol kg-1,  grey) profile for the Gulf of 585 
California (A) in 2007 and the Tehuantepec Bowl (B) and the Costa Rica Dome (C) in 2008 586 
from CTD casts.  587 
 588 
Fig. 2: Oxygen profiles (black line) of the CRD and TB during 2007 and 2008 with the 589 
abundance of pteropods found in vertically stratified MOCNESS tows during the daytime (light 590 
grey) and nighttime (dark grey). Note that the abundance scale differs between species and 591 
stations. 592 
 593 
Fig. 3: The oxygen consumption rate (Y, µmol O2 g-1 h-1) of all pteropods declines with body 594 
mass (M, g) according to Y = aMb (Table 3). 595 
 596 
Fig. 4:  Effect of temperature on oxygen consumption.  The O2 consumption rate for different 597 
pteropod species at 11ºC is displayed as a percentage of the O2 consumption rate at 20 ºC, both at 598 
normoxic conditions (21% O2, Table 4).  Values are scaled to the same body size by species 599 
specific constants (Table 3).  Cavolinia uncinata was excluded because it displayed no 600 
significant difference in metabolic rate between these temperatures. 601 
 602 
Fig. 5:  Effect of hypoxia on (A) O2 consumption and (B) O:N.  The O2 consumption rate and 603 
O:N ratio for different pteropod species under hypoxic conditions (1% O2) is shown as a 604 
percentage of the air saturated control  (21% O2; Table 4). Significant hypoxic effects are 605 
denoted with a star (*) 606 
  607 
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Table 1: Date of collection (date) and net data for each day and night vertical profile at the Costa Rica Dome (CRD) and Tehuantepec 608 

Bowl (TB) during 2007 and 2008. Pressure was recorded in decibars (dB) and served as a proxy for depth (1 dB ≈ 1 m). Each profile 609 

is a compilation of multiple net tows (number of nets = Net #) from different dates (Date), which were grouped into a vertical series 610 

(details in supplementary table 1). The volume of water filtered through each net was summed for each profile and documented in m3 611 

(V.f.).  612 

 613 
Year Station D/N Date Max dB Net # V.f. (m3) 
2007 CRD Night Nov. 8, 11 400 13 4485 

  
Day Nov. 8, 9 400 13 5813 

 
TB Night Oct. 29, 31  550 10 6418 

  
Day Oct. 27, 30 400 12 4760 

2008 CRD Night Dec. 30, Jan. 1 400 12 5506 

  
Day Dec. 28, 29 400 13 6071 

 
TB Night Dec. 17, 20 400 12 5185 

  
Day Dec. 15, 17 400 13 5692 

 614 
 615 
  616 



Maas et al. 23 
 

Table 2: The calculated mean weighted depth (MWD in m, see methods) of pteropods for each year and station. The total water 617 
column abundance (# individuals 1000 m-2) is from 0-400 meters for the six species of pteropods collected by the MOCNESS nets at 618 
the Tehuantepec Bowl (TB) and Costa Rica Dome (CRD).  619 
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   MWD #m-2 MWD #m-2 MWD #m-2 MWD #m-2 MWD #m-2 MWD #m-2 

2007 

Day 
TB 113 12 26 5 25 29 - - - - - - 

CRD 107 1 24 53 39 263 - - 21 2 275 1 

Night 
TB 19 23 19 24 15 8 - - 10 1 - - 

CRD 18 29 26 44 19 313 25 4 11 41 17 5 

2008 

Day 
TB 277 18 46 2 27 77 - - - - - - 

CRD 225 9 39 11 25 235 35 8 - - - - 

Night 
TB 37 217 35 1 35 5 - - 30 2 - - 

CRD 25 21 - - 27 49 10 1 - - 10 1 

  620 
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Table 3: Weights and O2 consumption for thecosomes are reported as an average ± SD. Scaling curves for each species were plotted 621 
(Y=aMb with an r2) to achieve a mean scaled O2 consumption ± SD. Mean scaled values were applied to determine the temperature 622 
coefficient (Q10) for each species. Student’s t-tests were run to determine whether there was a significant difference (bold < 0.05) in 623 
metabolic rate between 20º C and 11º C (p). 624 

Species ºC 

Wet weight (mg) O2 consumption 
(µmol O2 g-1 h-1) 

scaled O2 consumption 
(µmol O2 g-1 h-1) Q10 

Mean n Mean a b r2 p Mean  

H. striata 
20 10.5 ± 4.2 24 7.34 ± 3.59 

0.27 -0.70 0.48 >0.001 
6.8 ± 2.3 

2.0 
11 16.2 ± 5.4 36 2.21 ± 0.84 3.1 ± 1.2 

C. virgula 
20 6.8 ± 3.8 10 7.75 ± 4.17 

0.40 -0.56 0.52 >0.001 
4.9 ± 1.6 

3.9 
11 10.7 ± 3.8 10 1.24 ± 0.52 1.2 ± 0.4 

C. longirostris 
20 8.2 ± 3.7 20 12.29 ± 7.60 

0.01 -1.38 0.61 >0.001 
8.9 ± 3.8 

1.9 
11 11.0 ± 2.0 11 3.18 ± 1.40 3.4 ± 1.5 

D. quadridentata 
20 10.9 ± 6.2 12 10.62 ± 5.63 

0.60 -0.59 0.15 0.009 
9.6 ± 4.3 

2.6 
11 12.9 ± 3.6 5 2.87 ± 0.98 3.6 ± 1.7 

C. uncinata 
20 45.3 ± 30.0 6 4.01 ± 4.30 

0.25 -0.73 0.78 0.078 
2.1 ± 0.7 

0.7 
11 75.1 ± 14.7 13 2.54 ± 0.16 3.0 ± 1.2 

C. inflexa 
20 12.9 ± 9.8 4 6.47 ± 3.87 

0.39 -0.59 0.69 0.024 
6.3 ± 1.8 

2.7 
11 15.2 ± 4.2 5 2.29 ± 1.33 3.0 ± 1.5 

C. pyramidata 
20 9.1 ± 4.9 13 9.96 ± 4.80 

0.27 -0.72 0.52 - 
8.0 ± 2.7 

2.2 
11 23.5 1 2.28 2.7 

 625 
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Table 4: Effect of hypoxia on the average O2 consumption, NH3 excretion and O:N ± SD of thecosome pteropods at 11º C. Statistical 626 
significance (bold < 0.05) between treatments was reported using a Student’s t-test (p). 627 
  628 

Species treatments 

Wet weight (mg) 
O2 consumption 
(µmol O2 g-1 h-1) 

NH3 excretion 
(µmol NH3 g-1 h-1) O:N 

 
Mean N Mean p n Mean p n Mean p 

H. striata 
21% O2 16.2 ± 5.4 36 2.21 ± 0.84 

<0.01 
26 0.079 ± 0.042 

0.95 
26 69.7 ± 31.2 

<0.01 
1% O2 11.6 ± 4.1 41 1.47 ± 0.84 13 0.078 ± 0.045 13 33.3 ± 23.9 

C. virgula 
21% O2 10.7 ± 3.8 10 1.24 ± 0.52 

<0.01 
8 0.054 ± 0.026 

0.08 
8 57.4  ± 33.8 

0.03 
1% O2 8.16 ± 1.60 19 0.82 ± 0.54 6 0.086 ± 0.036 6 20.3 ± 15.6 

 
C. longirostris 

21% O2 11.0 ± 2.0 11 3.18 ± 1.40 
<0.01 

8 0.204 ± 0.151 
0.12 

8 43.8 ± 21.2  
0.06 1% O2 10.3 ± 2.1 7 1.63 ± 0.50 6 0.176 ± 0.064 6 21.2 ± 9.5 

 629 
  630 
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